首页> 外文OA文献 >Genetic Programs Constructed from Layered Logic Gates in Single Cells
【2h】

Genetic Programs Constructed from Layered Logic Gates in Single Cells

机译:单细胞分层逻辑门构建的遗传程序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic programs function to integrate environmental sensors, implement signal processing algorithms and control expression dynamics[1]. These programs consist of integrated genetic circuits that individually implement operations ranging from digital logic to dynamic circuits[2, 3, 4, 5, 6], and they have been used in various cellular engineering applications, including the implementation of process control in metabolic networks and the coordination of spatial differentiation in artificial tissues. A key limitation is that the circuits are based on biochemical interactions occurring in the confined volume of the cell, so the size of programs has been limited to a few circuits[1, 7]. Here we apply part mining and directed evolution to build a set of transcriptional AND gates in Escherichia coli. Each AND gate integrates two promoter inputs and controls one promoter output. This allows the gates to be layered by having the output promoter of an upstream circuit serve as the input promoter for a downstream circuit. Each gate consists of a transcription factor that requires a second chaperone protein to activate the output promoter. Multiple activator–chaperone pairs are identified from type III secretion pathways in different strains of bacteria. Directed evolution is applied to increase the dynamic range and orthogonality of the circuits. These gates are connected in different permutations to form programs, the largest of which is a 4-input AND gate that consists of 3 circuits that integrate 4 inducible systems, thus requiring 11 regulatory proteins. Measuring the performance of individual gates is sufficient to capture the behaviour of the complete program. Errors in the output due to delays (faults), a common problem for layered circuits, are not observed. This work demonstrates the successful layering of orthogonal logic gates, a design strategy that could enable the construction of large, integrated circuits in single cells.
机译:遗传程序的功能是整合环境传感器,执行信号处理算法并控制表情动态[1]。这些程序由集成的遗传电路组成,这些遗传电路分别实现从数字逻辑到动态电路的各种操作[2、3、4、5、6],并且已在各种细胞工程应用中使用,包括在代谢网络中实现过程控制。以及人造组织中空间分化的协调。一个关键的限制是电路是基于在有限的细胞中发生的生化相互作用,因此程序的大小已被限制为几个电路[1,7]。在这里,我们应用部分挖掘和定向进化来构建大肠杆菌中的一组转录与门。每个与门集成两个启动子输入,并控制一个启动子输出。这通过使上游电路的输出启动器用作下游电路的输入启动器来使栅极分层。每个门由一个转录因子组成,该转录因子需要第二个伴侣蛋白来激活输出启动子。从不同细菌菌株中的Ⅲ型分泌途径可以鉴定出多个活化剂-伴侣伴侣对。应用定向进化来增加电路的动态范围和正交性。这些门以不同的排列方式连接以形成程序,其中最大的是4输入与门,该门由3个电路组成,这些电路集成了4个可诱导系统,因此需要11种调节蛋白。测量单个门的性能足以捕获整个程序的行为。没有观察到由于延迟(故障)导致的输出错误,这是分层电路的常见问题。这项工作演示了正交逻辑门的成功分层,这种设计策略可以在单个单元中构建大型集成电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号